Integration of Energy-Efficient Ventilation Systems in Historic Buildings—Review and Proposal of a Systematic Intervention Approach

Author:

Rieser Alexander,Pfluger Rainer,Troi Alexandra,Herrera-Avellanosa Daniel,Thomsen Kirsten EngelundORCID,Rose JørgenORCID,Arsan Zeynep DurmuşORCID,Akkurt Gulden Gokcen,Kopeinig Gerhard,Guyot Gaëlle,Chung Daniel

Abstract

Historic building restoration and renovation requires sensitivity to the cultural heritage, historic value, and sustainability (i.e., building physics, energy efficiency, and comfort) goals of the project. Energy-efficient ventilation such as demand-controlled ventilation and heat recovery ventilation can contribute to the aforementioned goals, if ventilation concepts and airflow distribution are planned and realized in a minimally invasive way. Compared to new buildings, the building physics of historic buildings are more complicated in terms of hygrothermal performance. In particular, if internal insulation is applied, dehumidification is needed for robust and risk-free future use, while maintaining the building’s cultural value. As each ventilation system has to be chosen and adapted individually to the specific building, the selection of the appropriate system type is not an easy task. For this reason, there is a need for a scientifically valid, systematic approach to pair appropriate ventilation system and airflow distribution solutions with historical buildings. This paper provides an overview of the interrelationships between heritage conservation and the need for ventilation in energy-efficient buildings, regarding building physics and indoor environmental quality. Furthermore, a systematic approach based on assessment criteria in terms of heritage significance of the building, building physics (hygrothermal performance), and building services (energy efficiency, indoor air quality, and comfort rating) according to the standard EN 16883:2017 are applied.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3