Review of Fourth-Order Maximum Entropy Based Predictive Modeling and Illustrative Application to a Nuclear Reactor Benchmark: II. Best-Estimate Predicted Values and Uncertainties for Model Responses and Parameters

Author:

Cacuci Dan Gabriel1ORCID,Fang Ruixian1ORCID

Affiliation:

1. Center for Nuclear Science and Energy, Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA

Abstract

This work continues the review and illustrative application to energy systems of the “Fourth-Order Best-Estimate Results with Reduced Uncertainties Predictive Modeling” (4th-BERRU-PM) methodology. The 4th-BERRU-PM methodology uses the Maximum Entropy (MaxEnt) principle to incorporate fourth-order experimental and computational information, including fourth (and higher) order sensitivities of computed model responses with respect to model parameters. The 4th-BERRU-PM methodology yields the fourth-order MaxEnt posterior distribution of experimentally measured and computed model responses and parameters in the combined phase space of model responses and parameters. The 4th-BERRU-PM methodology encompasses fourth-order sensitivity analysis (SA) and uncertainty quantification (UQ), which were reviewed in the accompanying work (Part 1), as well as fourth-order data assimilation (DA) and model calibration (MC) capabilities, which will be reviewed and illustrated in this work (Part 2). The applicability of the 4th-BERRU-PM methodology to energy systems is illustrated by using the Polyethylene-Reflected Plutonium (acronym: PERP) OECD/NEA reactor physics benchmark, which is modeled using the linear neutron transport Boltzmann equation, involving 21,976 imprecisely known parameters. This benchmark is representative of “large-scale computations” such as those involved in the modeling of energy systems. The result (“response”) of interest for the PERP benchmark is the leakage of neutrons through the outer surface of this spherical benchmark, which can be computed numerically and measured experimentally. The impact of the high-order sensitivities of the response with respect to the PERP model parameters is quantified for “high-precision” parameters (2% standard deviations) and “typical-precision” parameters (5% standard deviations). Analyzing the best-estimate results with reduced uncertainties for the 1st—through 4th-order moments (mean values, covariance, skewness, and kurtosis) produced by the 4th-BERRU-PM methodology for the PERP benchmark indicates that, even for systems modeled by linear equations (e.g., the PERP benchmark), retaining only first-order sensitivities is insufficient for reliable predictive modeling (including SA, UQ, DA, and MC). At least second-order sensitivities should be retained in order to obtain reliable predictions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3