Abstract
Previous studies on Ga-doped ZnO nanorods (GZRs) have failed to address the change in GZR morphology with increased doping concentration. The morphology-change affects the GZR surface-to-volume ratio and the real essence of doping is not exploited for heterostructure optoelectronic characteristics. We present NH4OH treatment to provide an optimum morphological trade-off to n-GZR/p-Si heterostructure characteristics. The GZRs were grown via one of the most eminent and facile hydrothermal method with an increase in Ga concentration from 1% to 5%. The supplementary OH− ion concentration was effectively controlled by the addition of an optimum amount of NH4OH to synchronize GZR aspect and surface-to-volume ratio. Hence, the probed results show only the effects of Ga-doping, rather than the changed morphology, on the optoelectronic characteristics of n-GZR/p-Si heterostructures. The doped nanostructures were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, photoluminescence, Hall-effect measurement, and Keithley 2410 measurement systems. GZRs had identical morphology and dimensions with a typical wurtzite phase. As the GZR carrier concentration increased, the PL response showed a blue shift because of Burstein-Moss effect. Also, the heterostructure current levels increased linearly with doping concentration. We believe that the presented GZRs with optimized morphology have great potential for field-effect transistors, light-emitting diodes, ultraviolet sensors, and laser diodes.
Subject
General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献