Impact of Microstructure on the Electrochemical Performance of Round-Shaped Pitch-Based Graphite Fibers

Author:

Li Baoliu,Guo Jianguang,Huang Jiajun,Xu Huitao,Dong Zhijun,Li Xuanke

Abstract

In this study, three kinds of round-shaped pitch-based graphite fiber with different microstructural features (crystallinity and carbon layer orientation) were fabricated by melt-spinning, preoxidation, carbonization and graphitization. The morphology, crystalline size and carbon layer orientation of carbon fibers from different pitch precursors and spinning rates were characterized through X-ray diffraction, scanning electron microscopy and transmission electron analyses. The correlation of the electrochemical performance and microstructure of graphite fibers as anode materials for lithium-ion batteries was investigated. The results suggest that large-diameter anisotropic graphite fibers (L-AF3000) with a radial texture of the transverse section are more favorable for lithium intercalation storage. The discharge capacity of L-AF3000 is 319.1 mAh∙g−1 at 0.1 C (current density). Nevertheless, the capacity drops to 209.9 mAh∙g−1 at a high current density of 1 C, and the capacity retention is only 82.2% over 100 cycles at 0.1 C. Small-diameter anisotropic graphite fibers (S-AF3000) with a spiral-shaped wrinkle texture of the transverse section possess discharge capacities of 284.1 mAh∙g−1 at 0.1 C and 260.2 mAh∙g−1 at a high current density of 1 C. Meanwhile, the best capacity retention of the fibers is 101.6% over 100 cycles at 0.1 C. The results suggest that the disordered carbon layers in S-AF3000 can retain the structural integrity of fibers as anode material for lithium-ion batteries and thus obtain excellent cycle stability. In addition, larger crystalline sizes of fibers correspond to higher discharge capacity, and a smaller diameter is beneficial to the fast insertion and extraction of lithium-ion in fibers.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3