The Leakage Mechanism of the Package of the AlGaN/GaN Liquid Sensor

Author:

Zhang Hanyuan,Yang Shu,Sheng Kuang

Abstract

Wide bandgap gallium nitride (GaN)-based devices have attracted a lot of attention in optoelectronics, power electronics, and sensing applications. AlGaN/GaN based sensors, featuring high-density and high-mobility two-dimensional electron gas (2DEG), have been demonstrated to be effective chemical sensors and biosensors in the liquid environment. One of the key factors limiting the wide adoption of the AlGaN/GaN liquid sensor is the package reliability issue. In this paper, the reliability of three types of sensor packaging materials (SiO2/Si3N4, PI, and SiO2/Si3N4/PI) on top of 5-μm metal are tested in Phosphate buffer saline (PBS) solution. By analyzing the I-V characteristics, it is found that the leakage currents within different regimes follow distinct leakage models, whereby the key factors limiting the leakage current are identified. Moreover, the physical mechanisms of the package failure are illustrated. The failure of the SiO2/Si3N4 package is due to its porous structure such that ions in the solution can penetrate into the packaging material and reduce its resistivity. The failure of the PI package at a relatively low voltage (<3 V) is mainly due to the poor adhesion of PI to the AlGaN surface such that the solution can reach the electrode by the “lateral drilling” effect. The SiO2/Si3N4/PI package achieves less than 10 μA leakage current at 5 V voltage stress because it combines the advantages of the SiO2/Si3N4 and the PI packages. The analysis in this work can provide guidelines for the design and failure mechanism analysis of packaging materials.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review on Gallium Nitride for Liquid Sensors: Fabrications to Applications;ACS Applied Electronic Materials;2024-05-10

2. Prediction of Anomalous Variation in GaN-based Chemical Sensors;2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS);2022-11-21

3. Aerosol Jet Printing of SU-8 as a Passivation Layer Against Ionic Solutions;Journal of Electronic Materials;2022-01-18

4. Low limit of detection of the AlGaN/GaN-based sensor by the Kelvin connection detection technique;Microsystems & Nanoengineering;2021-07-01

5. The Safe Operating Area of AlGaN/GaN-Based Sensor;IEEE Sensors Journal;2021-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3