Water Level Inversion Detection Method for Water Level Images without a Scale in Complex Environments

Author:

Sun Chuanmeng12,Wei Yu12,Wang Wenbo12,Wu Zhibo12ORCID,Li Yong3

Affiliation:

1. State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China

2. School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China

3. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China

Abstract

Accurately perceiving changes in water level information is key to achieving the fine control of water and flooding; however, the existing technology cannot achieve water level recognition in complex and harsh environments, such as at night; in haze, rain, or snow; or during obscuration by floating objects or shadows. Therefore, on the basis of a deep analysis of the characteristics of water level images in complex and harsh environments, in this study, we took full advantage of a deep learning network’s ability to characterise semantic features and carried out exploratory research on water level detection in no-water-ruler scenarios based on the two technical means of target detection and semantic segmentation. The related experiments illustrate that all the methods proposed in this study can effectively adapt to complex and harsh environments. The results of this study are valuable for applications in solving the difficulties of accurate water level detection and flood disaster early warnings in poor-visibility scenarios.

Funder

the Fundamental Research Programs of Shanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3