Deploying Taller Turbines in Complex Terrain: A Hill Flow Study (HilFlowS) Perspective

Author:

Wharton Sonia,Foster Kathryn

Abstract

Terrain-induced flow acceleration is presented for the summertime, peak power season at Lawrence Livermore National Laboratory’s Site 300 for the Hill Flow Study (HilFlowS). HilFlowS, designed as an adjunct field campaign to the Department of Energy’s Second Wind Forecasting Improvement Project (WFIP2), provides wind profile observations at a second location in complex terrain for validating numerical atmospheric model simulations and for better understanding flow behavior over hills for wind power generation. One unique feature of HilFlowS was the inclusion of an undergraduate university student who helped plan and execute the experiment as well as analyze wind data from two remote sensing laser detection and ranging (lidar) instruments deployed along parallel ridgelines. HilFlowS examines the trend of building higher into the atmosphere for the purpose of increasing wind turbine power production and evaluates the wind resource in the Altamont Pass Region of Northern California for a set of wind turbines of differing hub-heights and rotor-disk diameters found in the area. The wind profiles show strongly channeled onshore flow above both hills, enhanced by strong subsidence aloft, which produces a wind maximum (Umax) around z = 10 m and strong negative shear throughout all of the evaluated rotor-disks for much of the summer wind season. Under these conditions, shear becomes more negative with increasing hub-height and increasing rotor-disk size. Rotor-disk equivalent wind speed (Uequiv), a measure of the average wind speed across the entire rotor-disk, is compared to hub-height, rotor length, and rated capacity factor for the set of turbines. Uequiv is most closely related to turbine hub-height and is negatively correlated given the low altitude of Umax. Based on these results, building the largest capacity, large rotor-disk wind turbine at the lowest possible hub-height appears to provide turbines in the Altamont with a fast, near-surface, onshore wind resource during the peak power season.

Funder

United States Department of Energy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3