Research on Oil Mist Leakage of Bearing in Hydropower Station: A Review

Author:

Sun Jie,Zhang YuquanORCID,Liu Bin,Ge Xinfeng,Zheng Yuan,Fernandez-Rodriguez EmmanuelORCID

Abstract

Hydropower is a clean and renewable energy, fundamental to the attainment of a sustainable society. Despite its efficacy and success, there is a need to address the hydroelectric stations’ oil throwing and mist leakage, resulting in the deterioration of the generating units, water, and biodiversity. The conventional engineering measures to deal with oil mist leakage include: the reduction in the operating pad and oil temperature, optimization of the oil circulation loop in the oil tank, improvement of the sealing performance, and design of the oil mist emission device. However, the problem of oil mist leakage of bearings is complex, intractable, and cannot be solved by only one method. Numerical simulation can help to solve the oil mist problem and make up for the shortage of engineering measures. Yet, the mass transfer, involving multi-component and multi-phase flow, becomes a limitation for many numerical studies. As a result, this paper seeks to integrate the solutions by reviewing two influences: the global measures of oil mist leakage proof in the oil tank of bearings in the past 40 years, and the views and experiences of engineering practices. These findings offer some relevant insights into the effectiveness of the applied methods and solving of the oil mist leakage problem.

Funder

State Grid Xinyuan Holding Co., Ltd Technology Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference151 articles.

1. Sustaining power production in hydropower stations of developing countries

2. Hydropower generation, flood control and dam cascades: A national assessment for Vietnam

3. A review on the large tilting pad thrust bearings in the hydropower units

4. Study of a Hydrodynamic Thrust Bearing for Hydroelectric Power Stations;De Sousa,2016

5. Tilting pad bearing history;Zabawski;Tribol. Lubr. Technol.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3