Abstract
The large fluctuations in charging loads of electric vehicles (EVs) make short-term forecasting challenging. In order to improve the short-term load forecasting performance of EV charging load, a corresponding model-based multi-channel convolutional neural network and temporal convolutional network (MCCNN-TCN) are proposed. The multi-channel convolutional neural network (MCCNN) can extract the fluctuation characteristics of EV charging load at various time scales, while the temporal convolutional network (TCN) can build a time-series dependence between the fluctuation characteristics and the forecasted load. In addition, an additional BP network maps the selected meteorological and date features into a high-dimensional feature vector, which is spliced with the output of the TCN. According to experimental results employing urban charging station load data from a city in northern China, the proposed model is more accurate than artificial neural network (ANN), long short-term memory (LSTM), convolutional neural networks and long short-term memory (CNN-LSTM), and TCN models. The MCCNN-TCN model outperforms the ANN, LSTM, CNN-LSTM, and TCN by 14.09%, 25.13%, 27.32%, and 4.48%, respectively, in terms of the mean absolute percentage error.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献