Integration of Waste to Bioenergy Conversion Systems: A Critical Review

Author:

Ochieng Richard,Gebremedhin Alemayehu,Sarker ShipluORCID

Abstract

Sustainable biofuel production is the most effective way to mitigate greenhouse gas emissions associated with fossil fuels while preserving food security and land use. In addition to producing bioenergy, waste biorefineries can be incorporated into the waste management system to solve the future challenges of waste disposal. Biomass waste, on the other hand, is regarded as a low-quality biorefinery feedstock with a wide range of compositions and seasonal variability. In light of these factors, biomass waste presents limitations on the conversion technologies available for value addition, and therefore more research is needed to enhance the profitability of waste biorefineries. Perhaps, to keep waste biorefineries economically and environmentally sustainable, bioprocesses need to be integrated to process a wide range of biomass resources and yield a diverse range of bioenergy products. To achieve optimal integration, the classification of biomass wastes to match the available bioprocesses is vital, as it minimizes unnecessary processes that may increase the production costs of the biorefinery. Based on biomass classification, this study discusses the suitability of the commonly used waste-to-energy conversion methods and the creation of integrated biorefineries. In this study, the integration of waste biorefineries is discussed through the integration of feedstocks, processes, platforms, and the symbiosis of wastes and byproducts. This review seeks to conceptualize a framework for identifying and integrating waste-to-energy technologies for the varioussets of biomass wastes.

Funder

Norwegian University of Science and Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference124 articles.

1. Net Zero by 2050: A Roadmap for the Global Energy Sector,2021

2. 2018: Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty,2019

3. Biomass as Renewable Energy: Worldwide Research Trends

4. Developing waste biorefinery in Makkah: A way forward to convert urban waste into renewable energy

5. Nexus Bioenergy–Bioeconomy;Lago,2019

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3