Sliding Mode Observer for State-of-Charge Estimation Using Hysteresis-Based Li-Ion Battery Model

Author:

Chen Mengying,Han Fengling,Shi Long,Feng Yong,Xue Chen,Gao Weijie,Xu Jinzheng

Abstract

Lithium-ion battery devices are essential for energy storage and supply in distributed energy generation systems. Robust battery management systems (BMSs) must guarantee that batteries work within a safe range and avoid the damage caused by overcharge and overdischarge. The state-of-charge (SoC) of Li-ion batteries is difficult to observe after batteries are manufactured. The hysteresis phenomenon influences the existing battery modeling and SoC estimation accuracy. This research applies a terminal sliding mode observer (TSMO) algorithm based on a hysteresis resistor-capacitor (RC) equivalent circuit model to enable accurate SoC estimation. The proposed method is evaluated using two dynamic battery tests: the dynamic street test (DST) and the federal urban driving schedule (FUDS) test. The simulation results show that the proposed method achieved high estimation accuracy and fast response speed. Additionally, real-time battery information, including battery output voltage and SoC, was acquired and displayed by an automatic monitoring system. The designed system is valuable for all battery application cases.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3