Phase Behavior of Carbon Dioxide + Isobutanol and Carbon Dioxide + tert-Butanol Binary Systems

Author:

Sima Sergiu,Crişciu Adrian Victor,Secuianu CatincaORCID

Abstract

In recent years, the dramatic increase of greenhouse gases concentration in atmosphere, especially of carbon dioxide, determined many researchers to investigate new mitigation options. Thermodynamic studies play an important role in the development of new technologies for reducing the carbon levels. In this context, our group investigated the phase behavior (vapor–liquid equilibrium (VLE), vapor–liquid–liquid equilibrium (VLLE), liquid–liquid equilibrium (LLE), upper critical endpoints (UCEPs), critical curves) of binary and ternary systems containing organic substances with different functional groups to determine their ability to dissolve carbon dioxide. This study presents our results for the phase behavior of carbon dioxide + n-butanol structural isomers binary systems at high-pressures. Liquid–vapor critical curves are measured for carbon dioxide + isobutanol and carbon dioxide + tert-butanol binary systems at pressures up to 147.3 bar, as only few scattered critical points are available in the literature. New isothermal vapor–liquid equilibrium data are also reported at 363.15 and 373.15 K. New VLE data at higher temperature are necessary, as only another group reported some data for the carbon dioxide + isobutanol system, but with high errors. Phase behavior experiments were performed in a high-pressure two opposite sapphire windows cell with variable volume, using a static-analytical method with phases sampling by rapid online sample injectors (ROLSI) coupled to a gas chromatograph (GC) for phases analysis. The measurement results of this study are compared with the literature data when available. The new and all available literature data for the carbon dioxide + isobutanol and carbon dioxide + tert-butanol binary systems are successfully modeled with three cubic equations of state, namely, General Equation of State (GEOS), Soave–Redlich–Kwong (SRK), and Peng–Robinson (PR), coupled with classical van der Waals mixing rules (two-parameter conventional mixing rules, 2PCMR), using a predictive method.

Funder

Unitatea Executivă pentru Finanțarea Învățământului Superior, a Cercetării, Dezvoltării și Inovării

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3