Abstract
Several investigations have shown that enhanced mixing brought about by wind turbines alters near-surface meteorological conditions within and downstream of a wind farm. When scalar meteorological parameters have been considered, the focus has most often centered on temperature changes. A subset of these works has also considered humidity to various extents. These limited investigations are complemented by just a few studies dedicated to analyzing humidity changes. With onshore wind turbines often sited in agricultural areas, any changes to the microclimate surrounding a turbine can impact plant health and the length of the growing season; any changes to the environment around an offshore wind farm can change cloud and fog formation and dissipation, among other impacts. This article provides a review of observational field campaigns and numerical investigations examining changes to humidity within wind turbine array boundary layers. Across the range of empirical observations and numerical simulations, changes to humidity were observed in stably stratified conditions. In addition to the role of atmospheric stability, this review reveals that the nature of the change depends on the upstream moisture profile; robustness of the mixing; turbine array layout; distance from the turbine, in all three directions; and vertical temperature profile.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献