A Reference Matching-Based Temperature Compensation Method for Ultrasonic Guided Wave Signals

Author:

Wang Geng,Wang Yuhang,Sun HuORCID,Miao Bingrong,Wang Yishou

Abstract

The ultrasonic guided wave-based structural damage diagnosis method has broad application prospects in different fields. However, some environmental factors such as temperature and loads will significantly affect the monitoring results. In this paper, a reference matching-based temperature compensation for ultrasonic guided wave signals is proposed to eliminate the effect of temperature. Firstly, the guided wave signals measured at different temperatures are used as reference signals to establish the relationship between the features of the reference signals and temperature. Then the matching algorithm based on Gabor function is used to establish the relationship between the amplitude influence coefficient obtained by the reference signal and the corresponding temperature. Finally, through these two relationships, the values of the phase and amplitude influence coefficients of the guided wave signals at other temperatures are obtained in a way of interpolation in order to reconstruct the compensation signals at the temperature. The effect of temperature on the amplitude and phase of the guided wave signal is eliminated. The proposed temperature compensation method is featured such that the compensation performance can be improved by multiple iteration compensation of the residual signal. The ultrasonic guided wave test results at different temperatures show that the first iterative compensation of the proposed method can achieve compensation within the temperature range greater than 7 °C, and the compensation within the temperature range greater than 18 °C can be achieved after three iterations.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference33 articles.

1. The use of Lamb waves for the long range inspection of large structures

2. Piezoelectric Transducer-Based Structural Health Monitoring for Aircraft Applications

3. Ultrasonic Guided Waves in Structural Health Monitoring

4. Opportunities and challenges of aircraft structural health monitoring;Sun;Acta Aeronaut. Astronaut. Sin.,2014

5. Challenge in structural health monitoring of large aircraft development;Yuan;Aeronaut. Manuf. Technol.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3