Mining the Microbiome and Microbiota-Derived Molecules in Inflammatory Bowel Disease

Author:

Bekkers Matthijs,Stojkovic Bojan,Kaiko Gerard E.ORCID

Abstract

The intestinal microbiota is a complex community that consists of an ecosystem with a dynamic interplay between bacteria, fungi, archaea, and viruses. Recent advances in model systems have revealed that the gut microbiome is critical for maintaining homeostasis through metabolic digestive function, immune regulation, and intestinal barrier integrity. Taxonomic shifts in the intestinal microbiota are strongly correlated with a multitude of human diseases, including inflammatory bowel disease (IBD). However, many of these studies have been descriptive, and thus the understanding of the cause and effect relationship often remains unclear. Using non-human experimental model systems such as gnotobiotic mice, probiotic mono-colonization, or prebiotic supplementation, researchers have defined numerous species-level functions of the intestinal microbiota that have produced therapeutic candidates for IBD. Despite these advances, the molecular mechanisms responsible for the function of much of the microbiota and the interplay with host cellular processes remain areas of tremendous research potential. In particular, future research will need to unlock the functional molecular units of the microbiota in order to utilize this untapped resource of bioactive molecules for therapy. This review will highlight the advances and remaining challenges of microbiota-based functional studies and therapeutic discovery, specifically in IBD. One of the limiting factors for reviewing this topic is the nascent development of this area with information on some drug candidates still under early commercial development. We will also highlight the current and evolving strategies, including in the biotech industry, used for the discovery of microbiota-derived bioactive molecules in health and disease.

Funder

National Health and Medical Research Council

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3