Biocompatibility and Cytotoxicity of Gold Nanoparticles: Recent Advances in Methodologies and Regulations

Author:

Kus-Liśkiewicz MałgorzataORCID,Fickers PatrickORCID,Ben Tahar Imen

Abstract

Recent advances in the synthesis of metal nanoparticles (MeNPs), and more specifically gold nanoparticles (AuNPs), have led to tremendous expansion of their potential applications in different fields, ranging from healthcare research to microelectronics and food packaging. The properties of functionalised MeNPs can be fine-tuned depending on their final application, and subsequently, these properties can strongly modulate their biological effects. In this review, we will firstly focus on the impact of MeNP characteristics (particularly of gold nanoparticles, AuNPs) such as shape, size, and aggregation on their biological activities. Moreover, we will detail different in vitro and in vivo assays to be performed when cytotoxicity and biocompatibility must be assessed. Due to the complex nature of nanomaterials, conflicting studies have led to different views on their safety, and it is clear that the definition of a standard biosafety label for AuNPs is difficult. In fact, AuNPs’ biocompatibility is strongly affected by the nanoparticles’ intrinsic characteristics, biological target, and methodology employed to evaluate their toxicity. In the last part of this review, the current legislation and requirements established by regulatory authorities, defining the main guidelines and standards to characterise new nanomaterials, will also be discussed, as this aspect has not been reviewed recently. It is clear that the lack of well-established safety regulations based on reliable, robust, and universal methodologies has hampered the development of MeNP applications in the healthcare field. Henceforth, the international community must make an effort to adopt specific and standard protocols for characterisation of these products.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3