PIM1 Inhibition Affects Glioblastoma Stem Cell Behavior and Kills Glioblastoma Stem-like Cells

Author:

Seifert CarolinORCID,Balz Ellen,Herzog Susann,Korolev Anna,Gaßmann Sebastian,Paland HeikoORCID,Fink Matthias A.ORCID,Grube Markus,Marx Sascha,Jedlitschky Gabriele,Tzvetkov Mladen V.,Rauch Bernhard H.ORCID,Schroeder Henry W. S.,Bien-Möller SandraORCID

Abstract

Despite comprehensive therapy and extensive research, glioblastoma (GBM) still represents the most aggressive brain tumor in adults. Glioma stem cells (GSCs) are thought to play a major role in tumor progression and resistance of GBM cells to radiochemotherapy. The PIM1 kinase has become a focus in cancer research. We have previously demonstrated that PIM1 is involved in survival of GBM cells and in GBM growth in a mouse model. However, little is known about the importance of PIM1 in cancer stem cells. Here, we report on the role of PIM1 in GBM stem cell behavior and killing. PIM1 inhibition negatively regulates the protein expression of the stem cell markers CD133 and Nestin in GBM cells (LN-18, U-87 MG). In contrast, CD44 and the astrocytic differentiation marker GFAP were up-regulated. Furthermore, PIM1 expression was increased in neurospheres as a model of GBM stem-like cells. Treatment of neurospheres with PIM1 inhibitors (TCS PIM1-1, Quercetagetin, and LY294002) diminished the cell viability associated with reduced DNA synthesis rate, increased caspase 3 activity, decreased PCNA protein expression, and reduced neurosphere formation. Our results indicate that PIM1 affects the glioblastoma stem cell behavior, and its inhibition kills glioblastoma stem-like cells, pointing to PIM1 targeting as a potential anti-glioblastoma therapy.

Funder

Monika Kutzner Stiftung

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference76 articles.

1. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma

2. Glioblastoma Multiforme

3. Cancer Stem Cells—Perspectives on Current Status and Future Directions: AACR Workshop on Cancer Stem Cells

4. Biology of glioma cancer stem cells

5. Role of glioblastoma stem cells in cancer therapeutic resistance: A perspective on antineoplastic agents from natural sources and chemical derivatives;Alves;Stem Cell Res.,2021

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3