Abstract
In the past few years, the ability to transfer power wirelessly has experienced growing interest from the research community. Because the wireless channel is subject to a large number of random phenomena, a crucial aspect is the statistical characterization of the energy that can be harvested by a given device. For this characterization to be reliable, a powerful model of the propagation channel is necessary. The recently proposed generalized-K model has proven to be very useful, as it encompasses the effects of path loss, shadowing, and fast fading for a broad set of wireless scenarios, and because it is analytically tractable. Accordingly, the purpose of this paper is to characterize, from a statistical point of view, the energy harvested by a static device from an unmodulated carrier signal generated by a dedicated source, assuming that the wireless channel obeys the generalized-K propagation model. Specifically, by using simulation-validated analytical methods, this paper provides exact closed-form expressions for the average and variance of the energy harvested over an arbitrary time period. The derived formulation can be used to determine a power transfer plan that allows multiple or even massive numbers of low-power devices to operate continuously, as expected from future network scenarios such as the Internet of things or 5G/6G.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Phase Shift Strategy of CPT System Based on Three-inputs Fuzzy PID Control;2023 IEEE 6th International Electrical and Energy Conference (CIEEC);2023-05-12