Butterfly Transforms for Efficient Representation of Spatially Variant Point Spread Functions in Bayesian Imaging

Author:

Eberle Vincent12ORCID,Frank Philipp1ORCID,Stadler Julia1,Streit Silvan3ORCID,Enßlin Torsten12ORCID

Affiliation:

1. Max Planck Institute for Astrophysics, Karl-Schwarzschild-Straße 1, 85748 Garching, Germany

2. Faculty of Physics, Ludwig-Maximilians-Universität München (LMU), Geschwister-Scholl-Platz 1, 80539 München, Germany

3. Fraunhofer Institute for Applied and Integrated Security AISEC, Lichtenbergstraße 11, 85748 Garching, Germany

Abstract

Bayesian imaging algorithms are becoming increasingly important in, e.g., astronomy, medicine and biology. Given that many of these algorithms compute iterative solutions to high-dimensional inverse problems, the efficiency and accuracy of the instrument response representation are of high importance for the imaging process. For efficiency reasons, point spread functions, which make up a large fraction of the response functions of telescopes and microscopes, are usually assumed to be spatially invariant in a given field of view and can thus be represented by a convolution. For many instruments, this assumption does not hold and degrades the accuracy of the instrument representation. Here, we discuss the application of butterfly transforms, which are linear neural network structures whose sizes scale sub-quadratically with the number of data points. Butterfly transforms are efficient by design, since they are inspired by the structure of the Cooley–Tukey fast Fourier transform. In this work, we combine them in several ways into butterfly networks, compare the different architectures with respect to their performance and identify a representation that is suitable for the efficient representation of a synthetic spatially variant point spread function up to a 1% error. Furthermore, we show its application in a short synthetic example.

Funder

German Aerospace Center

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference26 articles.

1. Predehl, P., Andritschke, R., Arefiev, V., Babyshkin, V., Batanov, O., Becker, W., Böhringer, H., Bogomolov, A., Boller, T., and Borm, K. (2020). The eROSITA X-ray telescope on SRG. arXiv.

2. Weisskopf, M.C., Tananbaum, H.D., Van Speybroeck, L.P., and O’Dell, S.L. (2000, January 27–29). Chandra X-ray Observatory (CXO): Overview. Proceedings of the X-Ray Optics, Instruments, and Missions III. International Society for Optics and Photonics, Munich, Germany.

3. NIFTY–Numerical Information Field Theory-A versatile PYTHON library for signal inference;Selig;Astron. Astrophys.,2013

4. NIFTy 3–Numerical Information Field Theory: A Python Framework for Multicomponent Signal Inference on HPC Clusters;Steininger;Ann. Phys.,2019

5. Arras, P., Baltac, M., Ensslin, T.A., Frank, P., Hutschenreuter, S., Knollmueller, J., Leike, R., Newrzella, M.N., Platz, L., and Reinecke, M. (2019). Nifty5: Numerical Information Field Theory v5, Astrophysics Source Code Library.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3