Abstract
Computational effort and convergence problems can pose serious challenges when employing advanced thermodynamic models in process simulation and optimization. Data-based surrogate modeling helps to overcome these problems at the cost of additional modeling effort. The present work extends the range of methods for efficient data-based surrogate modeling of liquid–liquid equilibria. A new model formulation is presented that enables smaller surrogates with box-constrained input domains and reduced input dimensions. Sample data are generated efficiently by using numerical continuation. The new methods are demonstrated for the surrogate modeling and optimization of a process for the hydroformylation of 1-decene in a thermomorphic multiphase system.
Funder
Deutsche Forschungsgemeinschaft
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献