Prediction of the Tunnel Collapse Probability Using SVR-Based Monte Carlo Simulation: A Case Study

Author:

Meng Guowang12,Li Hongle12,Wu Bo13,Liu Guangyang12,Ye Huazheng1,Zuo Yiming1

Affiliation:

1. School of Civil Engineering and Architecture, Guangxi University, 100 University Road, Nanning 530004, China

2. State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China

3. School of Civil and Architectural Engineering, East China University of Technology, Nanchang 330013, China

Abstract

Collapse is one of the most significant geological hazards in mountain tunnel construction, and it is crucial to accurately predict the collapse probability. By introducing the reliability theory, this paper proposes a calculation method for the collapse probability in mountain tunnel construction based on numerical simulation, support vector regression (SVR), and the Monte Carlo (MC) method. Taking the Jinzhupa Tunnel Project in Fujian Province as a case study, three-dimensional models were constructed, and the safety factors of the surrounding rock were determined using the strength reduction method. By defining the shear strength parameters of the surrounding rock as random variables, the problem was formulated as a reliability model, and the safety factor was chosen as the reliability index. To increase computational efficiency, the SVR model was trained to replace numerical simulations, and the MC method was adopted to calculate the probability of collapse. The results showed that the cause of the collapse was the change in the excavation method and the very late installation of supports. The feasibility and reliability of the proposed method have been verified, indicating that the method can be used to predict the probability of collapse in a practical risk assessment of mountain tunnel construction.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference36 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3