Distributed Cooperative Tracking Control Strategy for Virtual Coupling Trains: An Event-Triggered Model Predictive Control Approach

Author:

Li Zhongqi12,Zhong Lingyu12,Yang Hui12,Zhou Liang12

Affiliation:

1. School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China

2. State Key Laboratory of Performance Monitoring and Protecting of Rail Transit Infrastructure, East China Jiaotong University, Nanchang 330013, China

Abstract

Virtual coupling (VC) technology has received much attention because of its significant advantages in enhancing the railway transport capacity; it achieves efficient train coupling operation through advanced communication technology. However, due to the uncertainty of the operating environment, a stable and effective control system is the key enabler for realization. In this paper, an event-triggered distributed model predictive control (ET-DMPC) method is proposed for the cooperative tracking control of virtual coupling trains (VCTS), considering resource limitations and multiple constraints. Firstly, a distributed model predictive control (DMPC) framework is designed. Based on the established VCTS dynamics model of the dual-leader communication topology, a distributed optimization objective function and safety constraints containing state information of the neighboring train system are constructed. Secondly, due to the limitations of communication and computational resources, the event triggering (ET) mechanism is further introduced, and an ET-DMPC method suitable for VCTS is proposed. The trigger condition of each unit train is designed on the premise of guaranteeing system stability, under which the system can guarantee the input-state stability (ISS), and the recursive feasibility of the system is proven via theoretical analysis. Finally, the VCTS composed of four CRH380A unit trains is used as the control object for simulation experiments, and through two sets of experimental simulation analysis, the effectiveness of the proposed method is verified.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3