Significance of Pressure Drop, Changing Molar Flow, and Formation of Steam in the Accurate Modeling of a Multi-Tubular Fischer–Tropsch Reactor with Cobalt as Catalyst

Author:

Jess Andreas1,Kern Christoph1

Affiliation:

1. Department of Chemical Engineering, Center of Energy Technology (ZET), University of Bayreuth, 95440 Bayreuth, Germany

Abstract

A Fischer–Tropsch (FT) fixed-bed reactor was simulated with reactor models of different complexities to elucidate the impact of a pressure drop, a change in the total molar volume rate (induced by the reaction) along the tubes, and a change in the axial variation of the external radial heat transfer coefficient (external tube wall to cooling medium, here, boiling water) compared to disregarding these aspects. The reaction kinetics of CO conversion for cobalt as a catalyst were utilized, and the influence of inhibition of syngas (CO, H2) conversion reaction rate by steam, inevitably formed during FT synthesis, was also investigated. The analysis of the behavior of the reactor (axial/radial temperature profiles, productivity regarding the hydrocarbons formed, and syngas conversion) clearly shows that, for accurate reactor modeling, the decline in the total molar flow from the reaction and the pressure drop should be considered; both effects change the gas velocity along the tubes and, thus, the residence time and syngas conversion compared to disregarding these aspects. Only in rare cases do both opposing effects cancel each other out. The inhibition of the reaction rate by steam should also be considered for cobalt as a catalyst if the final partial pressure of steam in the tubes exceeds about 5 bar. In contrast, the impact of an axially changing heat transfer coefficient is almost negligible compared to disregarding this effect.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3