A Fast Algorithm for Estimating Two-Dimensional Sample Entropy Based on an Upper Confidence Bound and Monte Carlo Sampling

Author:

Zhou Zeheng1,Jiang Ying1,Liu Weifeng1,Wu Ruifan1,Li Zerong1,Guan Wenchao1

Affiliation:

1. School of Computer Science and Engineering, Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou 510275, China

Abstract

The two-dimensional sample entropy marks a significant advance in evaluating the regularity and predictability of images in the information domain. Unlike the direct computation of sample entropy, which incurs a time complexity of O(N2) for the series with N length, the Monte Carlo-based algorithm for computing one-dimensional sample entropy (MCSampEn) markedly reduces computational costs by minimizing the dependence on N. This paper extends MCSampEn to two dimensions, referred to as MCSampEn2D. This new approach substantially accelerates the estimation of two-dimensional sample entropy, outperforming the direct method by more than a thousand fold. Despite these advancements, MCSampEn2D encounters challenges with significant errors and slow convergence rates. To counter these issues, we have incorporated an upper confidence bound (UCB) strategy in MCSampEn2D. This strategy involves assigning varied upper confidence bounds in each Monte Carlo experiment iteration to enhance the algorithm’s speed and accuracy. Our evaluation of this enhanced approach, dubbed UCBMCSampEn2D, involved the use of medical and natural image data sets. The experiments demonstrate that UCBMCSampEn2D achieves a 40% reduction in computational time compared to MCSampEn2D. Furthermore, the errors with UCBMCSampEn2D are only 30% of those observed in MCSampEn2D, highlighting its improved accuracy and efficiency.

Funder

the Key-Area Research and Development Program of Guangdong Province, China

National Natural Science Foundation of China

Publisher

MDPI AG

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3