Band Structures Analysis of Elastic Waves Propagating along Thickness Direction in Periodically Laminated Piezoelectric Composites

Author:

Li Qiangqiang,Guo YongqiangORCID,Wang Jingya,Chen Wei

Abstract

Existing studies on elastic waves in periodically laminated piezoelectric structures mainly concerned the passive band properties, since the electrical boundaries in the considered structures cannot vary. This paper investigates the tuning of band properties of uncoupled primary and shear (P- and S-) waves along the thickness direction by actively varying the electrical field in periodically multilayered piezoelectric structures consisting of orthotropic materials. The alteration of the electrical field is realized in the multilayered unit cell here by either applying or switching four kinds of electrical boundary conditions, including the electric-open, applied electric capacitance, electric-short, and applied feedback voltage, to the constituent piezoelectric layer via the constituent electrode layers covering both its surfaces. First, the state space formalism is introduced to obtain the partial wave solution of any constituent orthotropic layer in the unit cell. Second, the traditional transfer matrix method is adopted to derive the dispersion equation of general, periodically laminated piezoelectric composites with unit cells consisting of an arbitrary number of piezoelectric layers with various boundaries and of elastic layers. Third, numerical examples are provided to verify the proposed analysis method, and to study the influences of electrode thickness as well as four electrical boundaries on the band structures. All the frequency-related dispersion curves are also illustrated by numerical examples to summarize the general dispersion characteristics of uncoupled P- and S-waves in periodically laminated piezoelectric composites. The main finding is that the innovative dispersion characteristic resulting from the negative capacitance may also be achieved via feedback control.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Reference58 articles.

1. Acoustical properties of a thinly laminated medium;Rytov;Sov. Phys. Acoust.,1956

2. Harmonic waves in a periodically laminated medium

3. The general problem of elastic wave propagation in multilayered anisotropic media

4. Elastic guided waves and the Floquet concept in periodically layered plates

5. On the wave propagation in periodically laminated composites;Matysiak;Bull. Pol. Acad. Sci. Tech. Sci.,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3