An Experimental Study on the Resistance of a High-Speed Air Cavity Craft

Author:

Song Lin12,Yu Jianxing1,Yu Yang1,Wang Zhaoyu1,Wu Shibo1,Gao Ruilong1

Affiliation:

1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China

2. Tianjin Renai College, Tianjin 301636, China

Abstract

For the marine industry, resistance reduction can reduce energy consumption and achieve protection of the marine environment. The use of air lubrication to reduce the resistance of ships is one of the most important ways. With this technology, high-speed air cavity crafts show immense potential as they can be utilized in various marine activities, such as emergency rescue, supply, and maritime security. Through experiments, this study presents an in-depth analysis of the effects of bubble chamber pressure and initial stern inclination on the resistance of high-speed air cavity crafts at different speeds. The results show that air pressure has a significant impact on resistance. It was found that as the speed of the ship increased, the resistance reduction effect became more prominent under the same pressure conditions. Moreover, the resistance tended to stabilize when the pressure reached a certain value. In addition to the air pressure, the longitudinal inclination does have an effect on resistance reduction. To achieve better resistance reduction, the initial stern inclination angle should be chosen appropriately. Furthermore, adjusting the angle with speed changes can optimize the resistance reduction effect. This experimental study provides critical support for conducting further research on high-speed air cavity crafts. The findings offer valuable insights into improving hull forms, guiding host selection, and assessing performance.

Funder

National Natural Science Foundation of China

Tianjin Science and Technology Plan

Ministry of Industry and Information Technology

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3