A Precise Semantic Segmentation Model for Seabed Sediment Detection Using YOLO-C

Author:

Chen Xin1ORCID,Shi Peng1ORCID,Hu Yi23ORCID

Affiliation:

1. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China

2. Laboratory of Coast and Marine Geology, Third Institute of Oceanography, Minister of Natural Resources (MNR), Xiamen 361005, China

3. Fujian Provincial Key Laboratory of Marine Physical and Geological Processes, Xiamen 361005, China

Abstract

Semantic segmentation methods have been successfully applied in seabed sediment detection. However, fast models like YOLO only produce rough segmentation boundaries (rectangles), while precise models like U-Net require too much time. In order to achieve fast and precise semantic segmentation results, this paper introduces a novel model called YOLO-C. It utilizes the full-resolution classification features of the semantic segmentation algorithm to generate more accurate regions of interest, enabling rapid separation of potential targets and achieving region-based partitioning and precise object boundaries. YOLO-C surpasses existing methods in terms of accuracy and detection scope. Compared to U-Net, it achieves an impressive 15.17% improvement in mean pixel accuracy (mPA). With a processing speed of 98 frames per second, YOLO-C meets the requirements of real-time detection and provides accurate size estimation through segmentation. Furthermore, it achieves a mean average precision (mAP) of 58.94% and a mean intersection over union (mIoU) of 70.36%, outperforming industry-standard algorithms such as YOLOX. Because of the good performance in both rapid processing and high precision, YOLO-C can be effectively utilized in real-time seabed exploration tasks.

Funder

Fujian Science and Technology Program Guiding Project

Xiamen Ocean Research and Development Institute Project

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semantic Segmentation Using U-Net for Autonomous Driving;2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3