Prediction of Added Resistance of Container Ships in Regular Head Waves Using an Artificial Neural Network
Author:
Affiliation:
1. Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia
Abstract
Funder
Croatian Science Foundation
Publisher
MDPI AG
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Link
https://www.mdpi.com/2077-1312/11/7/1293/pdf
Reference37 articles.
1. International Maritime Organization (2013). Interim guidelines for determining minimum propulsion power to maintain the manoeuvrability of ships in adverse conditions. IMO Resolut. MEPC, 232, 65.
2. The prediction of ship added resistance at the preliminary design stage by the use of an artificial neural network;Cepowski;Ocean Eng.,2020
3. Numerical studies on added resistance and motions of KVLCC2 in head seas for various ship speeds;Kim;Ocean Eng.,2017
4. Development of a framework to estimate the sea margin of an LNGC considering the hydrodynamic characteristics and voyage;Youngjun;Int. J. Nav. Archit. Ocean Eng.,2020
5. The impact of slow steaming on reducing CO2 emissions in the Mediterranean Sea;Degiuli;Energy Rep.,2021
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Real-Time Prediction of Multi-Degree-of-Freedom Ship Motion and Resting Periods Using LSTM Networks;Journal of Marine Science and Engineering;2024-09-09
2. Hydrodynamic shape optimization of an autonomous and remotely-operated vehicle via a multi-surrogate model;Brodogradnja;2024-07-01
3. Research on Ship Resistance Prediction Using Machine Learning with Different Samples;Journal of Marine Science and Engineering;2024-03-26
4. Research on Carbon Intensity Prediction Method for Ships Based on Sensors and Meteorological Data;Journal of Marine Science and Engineering;2023-11-28
5. Power Prediction Method for Ships Using Data Regression Models;Journal of Marine Science and Engineering;2023-10-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3