The Intensification of Prolonged Cooling Climate-Exacerbated Late Ordovician–Early Silurian Mass Extinction: A Case Study from the Wufeng Formation–Longmaxi Formation in the Sichuan Basin

Author:

Zhang Zhibo1ORCID,Guo Yinghai1,Wei Hengye2,Zeng Chunlin34,Zhang Jiaming1,Zhao Difei5ORCID

Affiliation:

1. School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221116, China

2. School of Earth Science and Technology, Southwest Petroleum University, Chengdu 610500, China

3. Key Laboratory of Shale Gas Exploration, Ministry of Natural Resources, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China

4. National and Local Joint Engineering Research Center of Shale Gas Exploration and Development, Chongqing Institute of Geology and Mineral Resources, Chongqing 401120, China

5. Geoscience and Unconventional Energy Research Center, Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou 221116, China

Abstract

The Late Ordovician–Early Silurian period was a significant transitional phase in geological history and has garnered global interest. This study focuses on the black shale series of the Wufeng Formation–Longmaxi Formation of the Upper Ordovician–Lower Silurian period in the Sichuan Basin. Based on the logging curves and lithological characteristics of the Yucan-1 Well, 46 black shale samples were collected from the target layer section for clay mineral XRD (46 samples) analysis and whole-rock XRF (14 samples) analysis. The results indicate that three third-order sequences (SQ1, SQ2, and SQ3) are present in the Wufeng Formation–Longmaxi Formation of the Yucan-1 Well, and two subfacies and three microfacies were identified. In conjunction with the characteristics as well as the characteristic parameters of whole-rock oxide and clay mineral content ((I/C), (S + I/S)/(I + C), CIA, CIA-error, CIW, PIA, MAP, and LST), the Wufeng Formation–Longmaxi Formation of the Yucan-1 Well is divided into three intervals. Interval I is the Wufeng Formation. During this interval, weathering intensity, surface temperature, and precipitation gradually decreased, while the climate shifted from warm and humid to cold and dry. This corresponds to two pulse-type biological extinction events and represents an interval of increasing organic carbon burial. Interval II encompasses the bottom-middle part of the Longmaxi Formation. Weathering intensity, surface temperature, and precipitation were characterized by smooth, low values. Subsequently, the climate was predominantly cold and dry. This was the primary interval of organic carbon enrichment. Interval III extends from the upper part to the top of the Longmaxi Formation. Weathering intensity, surface temperature, and precipitation gradually increased. The climate transitioned from cold and dry to warm and humid. Organic carbon burial gradually decreased, while sea levels dropped. This indicates that climate cooling was the primary controlling factor for this biological extinction event. In combination with previous divisions of graptolite zones in the Yucan-1 Well, it is postulated that this biological extinction event may primarily have been pulse extinction. The continuous cooling of the climate in the later period led to the continuous extinction of organisms that survived the disaster. Until approximately 438.76 Ma at the top of the Longmaxi Formation, the climate environment recovered to pre-extinction conditions, with a transition to a warm and humid climate again.

Funder

Graduate Innovation Program of China University of Mining and Technology

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Jiangsu Natural Science Foundation project

Chongqing Natural Science Foundation general Project

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3