Contribution of Various Shale Components to Pore System: Insights from Attributes Analysis

Author:

Xu Lingling12ORCID,Pan Renfang12ORCID,Hu Huiyan3,Meng Jianghui24ORCID

Affiliation:

1. School of Geosciences, Yangtze University, Wuhan 430100, China

2. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan 430100, China

3. Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan 430100, China

4. Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan 430100, China

Abstract

Shale pore systems are the result of the geological evolution of different matrix assemblages, and the composition of gas shale is considered to affect the pore systems in shale reservoirs. This study aimed to investigate the impact of both organic and inorganic constituents on the shale pore system, including specific surface area (SSA) and pore volume in Wufeng–Longmaxi Shale. Multiple linear regression (MLR) was employed to examine the contributions of different components to shale pore structure. The pore structure parameters, including pore SSA and pore volume, were obtained by gas adsorption experiments in 32 Wufeng–Longmaxi Shale (Late Ordovician–Early Silurian) samples. Both pore SSA and pore volume were calculated by the density functional theory (DFT) model on shale samples, and the pore types were determined by high-resolution field emission scanning electron microscopy (FE-SEM). The results of the X-ray diffractometer (XRD) analysis indicate that the Wufeng–Longmaxi Shale is dominated by quartz, clays, carbonates, feldspar, pyrite, and organic matter. Four models were made using SPSS software, all of which showed significant correlation between shale pore size and organic matter (OM) and clays. The content of organic matter played the biggest role in determining the size and structure of the pores. Although the content of quartz is the highest and serves as a rigid skeleton in shale reservoirs, it has complicated effects on the pore structure. In this study, most of the quartz is biogenetic and part of it is transformed from clays in deep shale. Therefore, these two parts of quartz are, respectively, related to organic matter and clays. In essence, the pores related to these two parts of quartz should be attributed to organic matter and clays, which also support the conclusion of the MLR models.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3