Study on the Damping Effect and Mechanism of Vertical Slotted Screens Based on the BM-MPS Method

Author:

Zhang Changle12,Wang Lizhu13,Xu Min1

Affiliation:

1. College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210046, China

2. First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China

3. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China

Abstract

Liquid sloshing is a common phenomenon in ocean engineering, and one which not only affects the stability of ship navigation, but also poses a threat to both the marine environment and human life. Ascertaining how best to reduce the amplitude of liquid sloshing has always been a key problem in ocean engineering. In this study, based on an improved moving-particle semi-implicit method, the BM-MPS method, the damping effect of a vertical slotted screen under rotation excitation was simulated and studied, and the influence of baffle porosity and the rotation amplitude on the resonance period and impact pressure was discussed. The results showed that the porosity had an obvious effect on the resonance period. A significant resonance period transformation happened when the porosity was 0.1, but a porosity of 0.15 was the point at which the maximum impact pressure in the resonance was at its minimum. Meanwhile, the impact duration curve was related to porosity. With the increasing of porosity, the impact duration curve changed from having no peak to a single peak, and then to double peak. In addition, the amplitude of rotation excitation was also one of the factors that affected the resonance period.

Funder

Natural Science Foundation of Jiangsu Province

the National Natural Science Foundation of China

The Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3