A Ship Tracking and Speed Extraction Framework in Hazy Weather Based on Deep Learning

Author:

Zhou Zhenzhen1,Zhao Jiansen1ORCID,Chen Xinqiang2,Chen Yanjun1

Affiliation:

1. College of Merchant Marine, Shanghai Maritime University, Shanghai 201306, China

2. Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China

Abstract

Obtaining ship navigation information from maritime videos can significantly improve maritime supervision efficiency and enable timely safety warnings. Ship detection and tracking are essential technologies for mining video information. However, current research focused on these advanced vision tasks in maritime supervision is not sufficiently comprehensive. Taking into account the application of ship detection and tracking technology, this study proposes a deep learning-based ship speed extraction framework under the haze environment. First, a lightweight convolutional neural network (CNN) is used to remove haze from images. Second, the YOLOv5 algorithm is used to detect ships in dehazed marine images, and a simple online and real-time tracking method with a Deep association metric (Deep SORT) is used to track ships. Then, the ship’s displacement in the images is calculated based on the ship’s trajectory. Finally, the speed of the ships is estimated by calculating the mapping relationship between the image space and real space. Experiments demonstrate that the method proposed in this study effectively reduces haze interference in maritime videos, thereby enhancing the image quality while extracting the ship’s speed. The mean squared error (MSE) for multiple scenes is 0.3 Kn on average. The stable extraction of ship speed from the video achieved in this study holds significant value in further ensuring the safety of ship navigation.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Shanghai Science and Technology Innovation Action Plan

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3