Abstract
This paper proposes a framework to perform the sensor classification by using multivariate time series sensors data as inputs. The framework encodes multivariate time series data into two-dimensional colored images, and concatenate the images into one bigger image for classification through a Convolutional Neural Network (ConvNet). This study applied three transformation methods to encode time series into images: Gramian Angular Summation Field (GASF), Gramian Angular Difference Field (GADF), and Markov Transition Field (MTF). Two open multivariate datasets were used to evaluate the impact of using different transformation methods, the sequences of concatenating images, and the complexity of ConvNet architectures on classification accuracy. The results show that the selection of transformation methods and the sequence of concatenation do not affect the prediction outcome significantly. Surprisingly, the simple structure of ConvNet is sufficient enough for classification as it performed equally well with the complex structure of VGGNet. The results were also compared with other classification methods and found that the proposed framework outperformed other methods in terms of classification accuracy.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
110 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献