Filtering Photon Cloud Data in Forested Areas Based on Elliptical Distance Parameters and Machine Learning Approach

Author:

Li YiORCID,Zhu Jun,Fu Haiqiang,Gao Shijuan,Wang ChangchengORCID

Abstract

The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) was successfully launched. Due to its small spot size, multibeam configuration, high sampling rate, and strong immunity to terrain slopes, it has been regarded as a powerful tool for forest resources surveying and managing. However, the ICESat-2 photon cloud data contain considerable background photons, which discretely distribute in the background space of signal photons. Therefore, it is necessary to filter these noise photons. In this study, photons are divided into three categories: signal photons, noise photons far away from signal photons, and noise photons adjacent to signal photons. Based on the existing research, forward and backward elliptical distances were used to express the spatial relationship between two photons, and backward local density (BLD) was used to describe the density distribution of the photons. However, the single statistical parameter cannot clearly distinguish three types of photon cloud. Therefore, forward local density (FLD) and neighboring forward local density difference (NFLDD) also were defined to describe the density distribution of the photons. Finally, by combining the support vector machine (SVM), the above three density parameters were used to classify the photons by signal and noise photons. The proposed method was validated with photon cloud data acquired by the Simulated Advanced Terrain Laser Altimeter System (MATLAS), the Multiple Altimeter Beam Experimental Lidar (MABEL), and the ICESat-2 systems over different forested areas. The results demonstrated that the proposed method can well remove the noise photons and retain the signal photons without depending on any statistical assumptions or thresholds. The comprehensive accuracy of the three test sites was 0.99, 0.98, and 0.99, respectively, which was higher than those of the existing method. In addition, the total errors corresponding to the three test sites were about 0.4%, 0.5%, and 1.0% respectively, which were lower than those of the existing method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3