Increased Diversity of Rhizosphere Bacterial Community Confers Adaptability to Coastal Environment for Sapium sebiferum Trees

Author:

Liu Xiaojing,Du Fengfeng,Chen Shaozhou,Li Naiwei,Cui JianORCID,Chang YajunORCID,Sun LinheORCID,Li Jinfeng,Yao Dongrui

Abstract

Sapium sebiferum (L.) Roxb. is an economically important tree in eastern Asia, and it exhibits many traits associated with good forestation species in coastal land. However, scarce research has been conducted to elucidate the effects of rhizosphere bacterial diversity on the adaptability and viability of S. sebiferum trees grown in the coastal environment. Field trials were conducted, and rhizosphere soil samples were collected from typical coastal and forestry nursery environments. Rhizosphere bacterial communities were evaluated using 16S rRNA pyrosequencing. A total of 43 bacterial phyla were detected in all the coastal and nursery rhizospheric soil samples. Relatively higher rhizosphere community diversity was found in coastal field-grown trees. Proteobacteria, Acidobacteriota, Bacteroidota, Chloroflex, and Gemmatimonadota were dominant bacterial phyla in rhizosphere communities of tallow trees. However, the rare groups in the coastal rhizosphere soils, with a relative abundance lower than 1%, including Latescibacterota, Methylomirabilota, NB1-j, and Nitrospirota, were largely absent in the nursery field-grown tree’s rhizosphere soils. LEfSe analysis identified a total of 43 bacterial groups that were more significantly abundant in the coastal rhizosphere environment than in that of forestry nursery grown trees. Further, our cladogram analysis identified Nitrospirota, Methylomirabilota, NB1-j, and Latescibacterota as biomarkers for the coastal environment at the phylum taxonomic level. These results suggested that the adaptability of S. sebiferum trees in coastal environment might be promoted by rhizosphere microbial interactions. Complex tree–microbe interactions might enhance the resistance of the trees to coastal environment, partially by recruiting certain bacterial microbiome species, which is of high saline-alkali resistance.

Funder

Jiangsu Forestry Science and Technology Innovation

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3