Zircon Macrocrysts from the Drybones Bay Kimberlite Pipe (Northwest Territories, Canada): A High-Resolution Trace Element and Geochronological Study

Author:

Reguir Ekaterina,Chakhmouradian Anton,Elliott Barrett,Sheng Ankar,Yang Panseok

Abstract

Zircon macrocrysts in (sub)volcanic silica-undersaturated rocks are an important source of information about mantle processes and their relative timing with respect to magmatism. The present work describes variations in trace element (Sc, Ti, Y, Nb, lanthanides, Hf, Ta, Pb, Th, and U) and isotopic (U-Pb) composition of zircon from the Drybones Bay kimberlite, Northwest Territories, Canada. These data were acquired at a spatial resolution of ≤100 µm and correlated to the internal characteristics of macrocrysts (imaged using cathodoluminescence, CL). Six types of zircon were distinguished on the basis of its luminescence characteristics, with the majority of grains exhibiting more than one type of CL response. The oscillatory-zoned core and growth sectors of Drybones Bay zircon show consistent variations in rare-earth elements (REE), Hf, Th, and U. Their chondrite-normalized REE patterns are typical of macrocrystic zircon and exhibit extreme enrichment in heavy lanthanides and a positive Ce anomaly. Their Ti content decreases slightly from the core into growth sectors, but the Ti-in-zircon thermometry gives overlapping average crystallization temperatures (820 ± 26 °C to 781 ± 19 °C, respectively). There is no trace element or CL evidence for Pb loss or other forms of chemical re-equilibration. All distinct zircon types are concordant and give a U-Pb age of 445.6 ± 0.8 Ma. We interpret the examined macrocrysts as products of interaction between a shallow (<100 km) mantle source and transient kimberlitic melt.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3