An Estimation of Precipitation Retention Time Using Depth Metres in the Northern Basin of Lake Biwa

Author:

Iwaki MahoORCID,Hayakawa Kazuhide,Goto Naoshige

Abstract

To facilitate climate change adaptations and water management, estimates of precipitation retention time (time required for precipitation to reach a lake) can help to accurately determine a water body’s terrestrial water storage capacity and water cycle. Although estimating the precipitation retention time on land is difficult, estimating the lag between precipitation on land and a rise in lake water levels is possible. In this study, the delay times (using a depth metre installed in the mooring system in the northern basin of Lake Biwa from August 2017 to October 2018) were calculated using response functions, and it evaluated the precipitation retention time in the catchment. However, as several delays between the river surface flow (<1 d) and shallow subsurface flow (≈45 d) remained unidentified, the delay times resulting from direct precipitation on the lake as well as from internal seiches were determined. The results suggest that delay times of approximately 20 d correspond to the paddy–waterway system between the river inflow and the subsurface flow, and that this effect corresponds to that of large rivers such as the Ane River. These findings can enhance water management strategies regarding the regulation of river flows, adapting to climate change-induced fluctuations in precipitation.

Funder

Environment Research and Technology Development Fund of the Ministry of the Environment, Japan

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference32 articles.

1. Global Hydrological Cycles and World Water Resources

2. Long-term changes in the Lake Kinneret ecosystem: The effects of climate change and anthropogenic factors;Ostrovsky,2013

3. Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: Insights from a statistical analysis

4. The Theory of Applied Integral Equation;Hidaka,1943

5. Estimation of the Future River Flood and Inundation Risk Due to Climate Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3