Prediction of Emission Reduction Potential from Road Diesel Vehicles in the Beijing–Tianjin–Hebei (BTH) Region, China

Author:

Guo Xiurui,Liu Yao,Chen DongshengORCID,Gong Xiaoqian

Abstract

China has started to focus on the reduction in pollutants from diesel vehicles with high emission intensities in recent years. Therefore, it is essential and valuable to conduct a deep and detailed exploration of the reduction potential from diesel vehicles and compare the abatement effect from different control measures in upcoming decades. This study attempted to estimate the present emissions of four conventional pollutants from diesel vehicles by applying the Computer Program to Calculate Emissions from Road Transport (COPERT) model, and to predict the future emission trends under different scenarios during 2019–2030, taking the Beijing–Tianjin–Hebei (BTH) region as the case study area. In addition, we analyzed the emission reduction potential of diesel vehicles and compared the reduction effects from different control measures. The results showed that the CO and NOX emissions from diesel vehicles in this region could increase by 104.8% and 83.9%, respectively, given no any additional control measures adopted over the next decade. The largest emission reduction effect could be achieved under the comprehensive scenario, which means that vehicular diesel emissions in 2030 could decrease by 74.8–94.0% compared to values in 2018. The effect of emission reduction under the emission standards’ upgrade scenario could cause a gradual increase and achieve a 19.8–82.6% reduction for the four pollutants in 2030. Furthermore, the new energy vehicle promotion scenario could achieve a considerable reduction effect. It could also offer better emission reduction effects under the highway to railway scenario for Tianjin and Hebei provinces. The old vehicle elimination scenario could have a considerable reduction effect, but only in the short term. Furthermore, emission reductions could be mainly influenced by heavy diesel trucks. These results can provide scientific support to formulate effective reduction measures to diesel vehicles for policy makers.

Funder

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3