Assessment of Mercury Concentrations and Fluxes Deposited from the Atmosphere on the Territory of the Yamal-Nenets Autonomous Area

Author:

Eyrikh StellaORCID,Shol Liliya,Shinkaruk ElenaORCID

Abstract

The problem of mercury input and its further distribution in the Arctic environment is actively debated, especially in recent times, due to the observed processes of permafrost thawing causing the enhanced release of mercury into the Arctic atmosphere and further distribution in the terrestrial and aquatic ecosystem. The atmospheric mercury deposition occurs via dry deposition and wet scavenging by precipitation events. Here we present a study of Hg in wet precipitation on the remote territory of the Russian Arctic; the data were obtained at the monitoring stations Nadym and Salekhard in 2016–2018. Mercury pollution of the Salekhard atmosphere in cold time is mainly determined by regional and local sources, while in Nadym, long-range transport of mercury and local fuel combustion are the main sources of pollutants in the cold season, while internal regional sources have a greater impact on the warm season. Total mercury concentrations in wet precipitation in Nadym varied from <0.5 to 63.3 ng/L. The highest Hg concentrations in the springtime were most likely attributed to atmospheric mercury depletion events (AMDE). The contributions of wet atmospheric precipitation during the AMDE period to the annual Hg deposition were 16.7% and 9.8% in 2016/2017 and 2017/2018, respectively. The average annual volume-weighted Hg concentration (VWC) in the atmospheric precipitation in Nadym is notably higher than the values reported for the remote regions in the Arctic and comparable with the values obtained for the other urbanized regions of the world. Annual Hg fluxes in Nadym are nevertheless close to the average annual fluxes for remote territories of the Arctic zone and significantly lower than the annual fluxes reported for unpolluted sites of continental-scale monitoring networks of the different parts of the world (USA, Europe, and China). The increase of Hg deposition flux with wet precipitation in Nadym in 2018 might be caused by regional emissions of gas and oil combustion, wildfires, and Hg re-emission from soils due to the rising air temperature. The 37 cm increase of the seasonally thawed layer (STL) in 2018 compared to the 10-year average reflects that the climatic changes in the Nadym region might increase Hg(0) evasion, considering a great pool of Hg is contained in permafrost.

Funder

Russian Federation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3