Application of Affinity Propagation Clustering Method in Medium and Extended Range Forecasting of Heavy Rainfall Processes in China

Author:

Huang Wei,Li Yong

Abstract

Based on the precipitation data of an ensemble forecast from the European Centre for Medium-Range Weather Forecasts, we establish a clustering model named EOF_AP by using the empirical orthogonal function decomposition and the affinity propagation clustering method. Then, using EOF_AP, we conducted research on the identification and classification of the characteristics of medium and extended range forecasts on 11 heavy rainfall events in the middle–lower reaches of the Yangtze River, North China, and the Huanghuai region, from June to September in 2021. We then selected two representative cases to analyze the common characteristics in detail to evaluate the effect of the model. The results show that the EOF_AP clustering model can better identify and classify the main rainfall pattern characteristics, and their corresponding occurrence probability of heavy rainfall processes, on the basis of comprehensively retaining the main forecast information of ensemble members with a few representative types. The rainfall pattern characteristics of some types with low occurrence probability can be identified, such as the extreme type. The distributions of rainfall patterns of the same type are basically consistent, whereas those among different types are distinct. Moreover, through the comparison of the forecast results with different starting times, we analyze the forecast performance of ensemble members and the variation trend of forecast results. We hope this study can provide a reference for the probability forecast of medium and extended range heavy rainfall process.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference42 articles.

1. An analysis on characteristics of heavy rainfall Processes during the Meiyu season in Jianghuai region;Li;Acta Meteorol. Sin.,2017

2. Analysis and Thinking on the Extremes of the 21 July 2012 Torrential Rain in Beijing Part I: Observation and Thinking;Yun;Meteorol. Mon.,2012

3. A Possible Dynamic Mechanism for Rapid Production of the Extreme Hourly Rainfall in Zhengzhou City on 20 July 2021

4. Quantitative precipitation forecasting in the UK

5. Supplement to The WGNE Assessment of Short-term Quantitative Precipitation Forecasts

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3