Particle Number Concentration: A Case Study for Air Quality Monitoring

Author:

Thén WandaORCID,Salma Imre

Abstract

Particle matter is one of the criteria air pollutants which have the most considerable effect on human health in cities. Its legislation and regulation are mostly based on mass. We showed here that the total number of particles and the particle number concentrations in different size fractions seem to be efficient quantities for air quality monitoring in urbanized areas. Particle number concentration (N) measurements were realized in Budapest, Hungary, for nine full measurements years between 2008 and 2021. The datasets were complemented by meteorological data and concentrations of criteria air pollutants. The annual medians of N were approximately 9 × 103 cm−3. Their time trends and diurnal variations were similar to other large continental European cities. The main sources of N are vehicle road traffic and atmospheric new aerosol particle formation (NPF) and consecutive growth events. The latter process is usually regional, so it appears to be better assessible for contribution quantification than mass concentration. It is demonstrated that the relative occurrence frequency of NPF was considerable, and its annual mean was around 20%. NPF events increased the contribution of ultrafine (UF < 100 nm) particles with respect to the regional particle numbers by 12% and 37% in the city center and in the near-city background, respectively. The pre-existing UF concentrations were doubled on the NPF event days.

Funder

Hungarian Research, Development and Innovation Office

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference58 articles.

1. Global Air Quality Guidelines. Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide,2021

2. The contribution of outdoor air pollution sources to premature mortality on a global scale

3. Traffic is a major source of atmospheric nanocluster aerosol

4. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019: Technical Guidance to Prepare National Emission Inventories,2019

5. Comparing associations of respiratory risk for the EPA Air Quality Index and health-based air quality indices

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3