Characterization of Aerosol Pollution in Two Hungarian Cities in Winter 2009–2010

Author:

Furu Enikő,Angyal Anikó,Szoboszlai Zoltán,Papp Enikő,Török Zsófia,Kertész ZsófiaORCID

Abstract

In this study, atmospheric particulate matter (APM) pollution was compared in urban background sites of two cities in Hungary—namely the capital Budapest and Debrecen—by analyzing daily aerosol samples collected between 8 December 2009 and 18 March 2010. Concentration, elemental composition, including BC, and sources of fine (PM2.5) and coarse (PM2.5–10) aerosol pollution, as well as their variation due to meteorological conditions and anthropogenic activities, were determined for both cities. The average PM2.5 concentrations were 22 μg/m3 and 17 μg/m3 in Budapest and Debrecen, respectively. In the case of PM10, the mean concentration was 32 μg/m3 in Budapest and 23 μg/m3 in Debrecen. The concentration of the coarse fraction decreased significantly over the weekends compared to working days. The number of exceedances of the WHO recommended limit value for PM2.5 (15 μg/m3) were 67 in Budapest and 46 in Debrecen, which corresponds to 73% and 50% of the sampling days, respectively. At the time of the exceedances the daily average temperature was below freezing. The average PM2.5/PM10 ratio was 70% and 75% for the two sites, indicating the dominance of the fine fraction aerosol particles during the study period. Elements of natural origin (Al, Si, Ca, Ti, Mn, Fe, Ba) and chlorine were found to be dominant in the coarse fraction, while elements of anthropogenic origin (S, K, Cu, Zn, Pb) were characteristic to the fine fraction. Similar concentrations were measured in the two cities in the case of S which originates from regional transport and K which serves as a tracer for biomass combustion. Traffic-related elements were present in 2–3 times higher concentrations in Budapest. The episodic peaks in the Cl time series could be attributed to salting after snowfalls. The following sources of APM pollution were identified by using the EPA Positive Matrix Factorization (PMF) 5.0 receptor model: soil, traffic, road dust, secondary sulfate, biomass burning, and de-icing of streets. On polluted days when the PM2.5 concentration exceeded the 25 μg/m3 value the contribution of secondary sulfate, domestic heating, and traffic increased significantly compared to the average. On weekends and holidays the contribution of soil and traffic decreased. The main pollution sources and their contributions were similar to the ones in other cities in the region. Comparing our findings to results from winter 2015 it can be concluded that while the PM2.5 pollution level remained almost the same, a significant increase in the contribution of biomass burning was observed in both cities from 2010 to 2015, indicating a change of heating habits.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3