A Climatology of Mesoscale Convective Systems in Northwest Mexico during the North American Monsoon

Author:

Ramos-Pérez OmarORCID,Adams DavidORCID,Ochoa-Moya CarlosORCID,Quintanar ArturoORCID

Abstract

Mesoscale Convective Systems (MCS) may vary greatly with respect to their morphology, propagation mechanism, intensity, and under which synoptic-scale conditions as a function of topographic complexity. In this study, we develop a long-term climatology of MCS during the North American Monsoon focusing on MCS morphology, lifecycle, and intensity as well as possible propagation mechanisms. We employ an MCS tracking and classification technique based on 23 years (1995 to 2017) of GOES IR satellite data. MCS intensity is also gauged with 7 years (2011 to 2017) of Vaisala GLD360 lightning data and, finally, monthly and interannual variability in synoptic conditions are examined with ERA5 reanalysis data. Our results based on 1594 identified MCS reveal that 98% are morphologically classified as Persistent Elongated Convective Systems. During the 23 summers (June through September) observed, the number of MCS varied considerably, averaging 70 MCS with minimum of 41 and maximum of 94. MCS typically have an average duration of around 8 h ± with a 2 h standard deviation. Propagation speeds, estimated with Hovmöller diagrams in addition to MCS centroid initial and final position, vary slightly depending on the trajectory. A notable result suggests that MCS propagation speeds are more consistent density currents or cold pools and not gravity waves nor steering-level winds. The results of this study could also provide a dataset for examining larger-scale controls on MCS frequency in addition to assesing convective parameterization and convective-resolving models in regions of complex topography.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3