Evaluation of the Planetary Boundary Layer Height in China Predicted by the CMA-GFS Global Model

Author:

Long HaichuanORCID,Chen Qiying,Gong Xi,Zhu Keyun

Abstract

The key role of the planetary boundary layer height (PBLH) in pollution, climate, and model forecasting has long been recognized. However, the observed PBLH has rarely been used to evaluate numerical weather prediction models in China. We compared the temporal and spatial characteristics of the bias in the PBLH in China predicted by the CMA-GFS model with vertical high-resolution sounding data and Global Positioning System occultation data from 2019 to 2020. We found that: (1) The PBLH in East China is systematically underestimated by the CMA-GFS model. The bias mainly results from the underestimation of the wind shear in the boundary layer, a smaller sensible heat flux near the surface, and a lower surface temperature. The combined effects of these factors inhibit the boundary layer from developing to a higher height, although the most important contributor is the small sensible heat flux. (2) There is a systematic overestimation of the PBLH over the Tibetan Plateau throughout the year. The bias is mainly a result of the smaller buoyancy, higher wind shear, and larger sensible heat flux forecast by the CMA-GFS model, which drive the boundary layer to develop to a significantly deeper height than the observations. This bias in the CMA-GFS model is mainly caused by the bias in the sensible heat flux and wind shear forecasts. In contrast, the CMA-GFS model underestimates the PBLH in the Tarim Basin. Our preliminary analysis shows that the boundary layer forecasted is unable to develop because the buoyancy effect of the model is too strong. Therefore, the bias of the predicted PBLH by the CMA-GFS model in China is mainly caused by inaccuracies in the sensible heat flux and wind shear forecasts.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3