Author:
Wei Lei,Lei Hengchi,Hu Wenhao,Huang Minsong,Zhang Rong,Zhang Xiaoqing,Hou Tuanjie,Lü Yuhuan
Abstract
In this study, we investigated the macro- and microstructures of layered precipitation clouds in spring in Jilin Province, China. The premise of the campaign was to observe cloud particles in the melting layer (ML). The weather was developed under the influence of the Mongolia cyclone, which brought a large range of precipitation to the northeast. Combining the Droplet Measurement Technology (DMT) and Particle Measuring Systems (PMS) data, small particles accounted for the majority of all particles at each level above and below the ML. In our observations, both ice crystals (50–300 μm) and snowflakes (>300 μm) had two peaks between −5 and −2 °C. The high concentration of ice crystals at a temperature of −2.65 °C (4865 m) attained a maximum value of 287 L−1 and snowflakes with 47 L−1, which was similar to the previous studies. The Hallett–Mossop ice multiplication process operated most effectively at the temperature of −5 °C in this study. Even at the cloud dissipation stage, new droplets were still generated between −5 and −6 °C, providing abundant liquid water content (LWC) for the upper cloud. Although irregulars were observed, needles and spheres dominated in the observed cloud region of low LWC (<0.1 g m−3) at temperatures of −6 to −3 °C. These cloud conditions fit into the Hallett–Mossop criteria.
Funder
the National Key Research and Development Program of China
the National Natural Science Foundation of China
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献