An Analysis of the Microstructure of the Melting Layer of a Precipitating Stratiform Cloud at the Dissipation Stage

Author:

Wei Lei,Lei Hengchi,Hu Wenhao,Huang Minsong,Zhang Rong,Zhang Xiaoqing,Hou Tuanjie,Lü Yuhuan

Abstract

In this study, we investigated the macro- and microstructures of layered precipitation clouds in spring in Jilin Province, China. The premise of the campaign was to observe cloud particles in the melting layer (ML). The weather was developed under the influence of the Mongolia cyclone, which brought a large range of precipitation to the northeast. Combining the Droplet Measurement Technology (DMT) and Particle Measuring Systems (PMS) data, small particles accounted for the majority of all particles at each level above and below the ML. In our observations, both ice crystals (50–300 μm) and snowflakes (>300 μm) had two peaks between −5 and −2 °C. The high concentration of ice crystals at a temperature of −2.65 °C (4865 m) attained a maximum value of 287 L−1 and snowflakes with 47 L−1, which was similar to the previous studies. The Hallett–Mossop ice multiplication process operated most effectively at the temperature of −5 °C in this study. Even at the cloud dissipation stage, new droplets were still generated between −5 and −6 °C, providing abundant liquid water content (LWC) for the upper cloud. Although irregulars were observed, needles and spheres dominated in the observed cloud region of low LWC (<0.1 g m−3) at temperatures of −6 to −3 °C. These cloud conditions fit into the Hallett–Mossop criteria.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3