Impact of Stratosphere on Cold Air Outbreak: Observed Evidence by CrIS on SNPP and Its Comparison with Models

Author:

Xiong XiaozhenORCID,Liu Xu,Wu WanORCID,Knowland K. Emma,Yang Fanglin,Yang Qiguang,Zhou Daniel K.ORCID

Abstract

A cold air outbreak (CAO) is an extreme weather phenomenon that has significant social and economic impacts over a large region of the midlatitudes. However, the dynamical mechanism of the occurrence and evolution of CAO events, particularly the role of the stratosphere, is not well understood. Through an analysis of one extreme CAO episode that occurred on 27–31 January 2019 across much of the US Midwest, this study examined its thermodynamic structure and the impact of stratospheric downward transport using the single-field-view (SFOV) satellite products (with a spatial resolution of ~14 km at nadir) from the Cross-track Infrared Sounder (CrIS) onboard Suomi National Polar-Orbiting Partnership (SNPP) in conjunction with MERRA-2 and ERA-5 reanalysis products. It is found that along the path of cold air transport, particularly near the coldest surface center, there exists a large enhancement of O3, deep tropopause folding, significant downward transport of stratospheric dry air, and a warm center above the tropopause. The upper warm center can be observed directly using the brightness temperature (BT) of CrIS stratospheric sounding channels. While similar large-scale patterns of temperature (T), relative humidity (RH), and ozone (O3) are captured from CrIS, MERRA-2, and ERA-5 products, it is found that, in the regions impacted by CAO, MERRA-2 has a thicker dry layer under the tropopause (with the difference of RH up to ~10%) and the total column ozone (TCO) from ERA-5 has a relatively large positive bias of 2.8 ± 2.8% compared to that measured by Ozone Mapping and Profiler Suite (OMPS). This study provides some observational evidence from CrIS that confirm the impact of the stratosphere on CAO through downward transport and demonstrates the value of the SFOV retrieval products for CAO dynamic transport study and model evaluation.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3