Understanding the Sources of Ambient Fine Particulate Matter (PM2.5) in Jeddah, Saudi Arabia

Author:

Nayebare Shedrack R.,Aburizaiza Omar S.,Siddique Azhar,Hussain Mirza M.,Zeb Jahan,Khatib Fida,Carpenter David O.ORCID,Blake Donald R.,Khwaja Haider A.

Abstract

Urban air pollution is rapidly becoming a major environmental problem of public concern in several developing countries of the world. Jeddah, the second-largest city in Saudi Arabia, is subject to high air pollution that has severe implications for the health of the exposed population. Fine particulate matter (PM2.5) samples were collected for 24 h daily, during a 1-year campaign from 2013 to 2014. This study presents a detailed investigation of PM2.5 mass, chemical composition, and sources covering all four seasons of the year. Samples were analyzed for black carbon (BC), trace elements (TEs), and water-soluble ionic species (IS). The chemical compositions were statistically examined, and the temporal and seasonal patterns were characterized using descriptive analysis, correlation matrices, and elemental enrichment factor (EF). Source apportionment and source locations were performed on PM2.5 samples using the positive matrix factorization (PMF) model, elemental enrichment factor, and air-mass back trajectory analysis. The 24-h mean PM2.5 and BC concentrations ranged from 33.9 ± 9.1–58.8 ± 25 µg/m3 and 1.8 ± 0.4–2.4 ± 0.6 µg/m3, respectively. Atmospheric PM2.5 concentrations were well above the 24-h WHO guideline of 15 µg/m3, with overall results showing significant temporal and seasonal variability. EF defined two broad categories of TEs: anthropogenic (Ni, V, Cu, Zn, Cl, Pb, S, Lu, and Br), and earth-crust derived (Al, Si, Mg, K, Ca, Ti, Cr, Mn, Fe, and Sr). The five identified factors resulting from PMF were (1) fossil-fuels/oil combustion (45.3%), (2) vehicular emissions (19.1%), (3) soil/dust resuspension (15.6%), (4) industrial mixed dust (13.5%), and (5) sea-spray (6.5%). This study highlights the importance of focusing control strategies, not only on reducing PM concentration but also on the reduction of components of the PM as well, to effectively protect human health and the environment.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference78 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3