Forecasting GNSS Zenith Troposphere Delay by Improving GPT3 Model with Machine Learning in Antarctica

Author:

Li SongORCID,Xu TianheORCID,Xu Yan,Jiang Nan,Bastos LuísaORCID

Abstract

Antarctica has a significant impact on global climate change. However, to draw climate change scenarios, there is a need for meteorological data, such as water vapor content, which is scarce in Antarctica. Global navigation satellite system (GNSS) networks can play a major role in overcoming this problem as the tropospheric delay that can be derived from GNSS measurements is an important data source for monitoring the variation of water vapor content. This work intends to be a contribution for improving the estimation of the zenith tropospheric delay (ZTD) obtained with the latest global pressure–temperature (GPT3) model for Antarctica through the use of long short-term-memory (LSTM) and radial basis function (RBF) neural networks for modifying GPT3_ZTD. The forecasting ZTD model is established based on the GNSS_ZTD observations at 71 GNSS stations from 1 January 2018 to 23 October 2021. According to the autocorrelation of the bias series between GNSS_ZTD and GPT3_ZTD, we predict the LSTM_ZTD for each GNSS station for period from October 2020 to October 2021 using the LSTM day by day. Based on the bias between LSTM_ZTD and GPT3_ZTD of the training stations, the RBF is adopted to estimate the LSTM_RBF_ZTD of the verified station, where the LSTM_ZTD represents the temporal forecasting ZTD at a single station, and the LSTM_RBF_ZTD represents the predicted ZTD obtained from space. Both the daily and yearly RMSE are calculated against the reference (GNSS_ZTD), and the improvement of predicted ZTD is compared with GPT3_ZTD. The results show that the single-station LSTM_ZTD series has a good agreement with the GNSS_ZTD, and most daily RMSE values are within 20 mm. The yearly RMSE of the 65 stations ranges from 6.4 mm to 32.8 mm, with an average of 10.9 mm. The overall accuracy of the LSTM_RBF_ZTD is significantly better than that of the GPT3_ZTD, with the daily RMSE of LSTM_RBF_ZTD significantly less than 30 mm, and the yearly RMSE ranging from 5.6 mm to 50.1 mm for the 65 stations. The average yearly RMSE is 15.7 mm, which is 10.2 mm less than that of the GPT3_ZTD. The LSTM_RBF_ZTD of 62 stations is more accurate than GPT3_ZTD, with the maximum improvement reaching 76.3%. The accuracy of LSTM_RBF_ZTD is slightly inferior to GPT3_ZTD at three stations located in East Antarctica with few GNSS stations. The average improvement across the 65 stations is 39.6%.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province, China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3