Thermal Model Validation Process for Building Environment Simulation: A Case Study for Single-Family House

Author:

Sarna IzabelaORCID,Ferdyn-Grygierek JoannaORCID,Grygierek KrzysztofORCID

Abstract

Currently, more and more emphasis is being placed on reducing energy consumption in buildings to reduce greenhouse gases in the atmosphere. Building performance simulation is very useful to predict energy demand and indoor environment quality. An indispensable element of the simulation is the validation and calibration of the model, which is an arduous process. The aim of the study was to present a four-level validation (using measurement results) and calibration of a thermal model of a naturally ventilated single-family house. Numerical calculations using co-simulation between EnergyPlus and Contam were performed. The results of the one-year simulation measurements of the indoor temperature and ventilation airflows were compared. After the calibration was performed, a high convergence of the results was found. The normalized mean bias error for hourly and monthly values did not exceed 1% and the coefficient of variation of the root mean squared error was a maximum of 7% with a simultaneous high correlation of the results in the range from 0.85 to 0.89. It was found that the final results were significantly influenced by the appropriate modeling of air exchange in the building, including the opening of windows.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference45 articles.

1. An EnergyPlus Whole Building Energy Model calibration method for office buildings using occupant behaviour data mining and empirical data;Lam;In Proceeding of the Building Simulation Conference,2014

2. Building model calibration using energy and environmental data

3. Analysis of the model reliability for building thermal simulation;Sarna,2020

4. Impacts of airflows, internal heat and moisture gains on accuracy of modeling energy consumption and indoor parameters in passive building

5. A review of methods to match building energy simulation models to measured data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3