High-Resolution Measurements of SO2, HNO3 and HCl at the Urban Environment of Athens, Greece: Levels, Variability and Gas to Particle Partitioning

Author:

Liakakou EleniORCID,Fourtziou Luciana,Paraskevopoulou DespinaORCID,Speyer Orestis,Lianou Maria,Grivas GeorgiosORCID,Myriokefalitakis SteliosORCID,Mihalopoulos NikolaosORCID

Abstract

High-resolution measurements of sulfur dioxide (SO2), nitric acid (HNO3), and hydrochloric acid (HCl) were conducted in Athens, Greece, from 2014 to 2016 via a wet rotating annular denuder system paired with an ion chromatograph. Decreased mean annual levels of SO2 and HNO3 (equal to 3.3 ± 4.8 μg m−3 and 0.7 ± 0.6 μg m−3, respectively) were observed relative to the past, whereas for HCl (mean of 0.4 μg m−3 ) no such comparison was possible as the past measurements are very scarce. Regional and local emission sources regulated the SO2 levels and contributed to both the December and the July maxima of 6.6 μg m−3 and 5.5 μg m−3, respectively. Similarly, the significant enhancement at noon and during the winter nighttime was due to transported SO2 and residential heating, respectively. The oxidation of NO2 by OH radicals and the heterogeneous reactions of HNO3 on sea salt seemed to drive the HNO3 and HCl formation, respectively, whereas nighttime biomass burning affected only the former by almost 50%. During summer, the sulfate anions dominated over the SO2, in contrast to the chloride and nitrate ions that prevailed during the winter and were linked to the aerosol acidity that influences their lifetime as well as their impact on ecosystems.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of Semi-continuous Measurement System for Atmospheric HNO3;Journal of Korean Society for Atmospheric Environment;2023-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3